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Abstract
Localization of electronic states in disordered thin layered systems with b
layers is studied within the Anderson model of localization using the transfer-
matrix method and finite-size scaling of the inverse of the smallest Lyapunov
exponent. The results support the one-parameter scaling hypothesis for disorder
strengths W studied and b = 1, . . . , 6. The obtained results for the localization
length are in quantitative agreement with both the analytical results of the self-
consistent theory of localization and the numerical scaling studies of the two-
dimensional Anderson model. The localization length near the band centre
grows exponentially with b for fixed W but no localization–delocalization
transition takes place.

1. Introduction

The one-parameter scaling theory of Abrahams et al [1], which predicts that all single-particle
electronic states of non-interacting electronic systems in two dimensions (2D) are localized
for arbitrarily weak random potential, has attracted much attention in the last 25 years. This
subtle effect is understood as being due to the constructive interference between time-reversed
paths which increases the probability of returning to the original position leading to universal
conductance fluctuations [2, 3] and corrections to conductivity, whose divergence in d = 2
explains the absence of diffusion [4–9]. It has also been investigated numerically for different
lattice structures, e.g. square, honeycomb and triangular at the band centre (E = 0) and away
from the band centre in two-dimensional (2D) systems, but no extended states were found for
the non-interacting and zero-field case, supporting the scaling hypothesis [10]. There have
been more theoretical and experimental investigations to see the validity of the conclusions
of scaling theory [5, 11–15], supporting the theory from a variety of numerical, experimental
and analytical approaches in the absence of electron–electron interactions, magnetic field and
spin–orbit interactions [3–5, 8, 9, 15, 16].

In 3D systems, on the other hand, scaling theory predicts that there exists a second-order
continuous phase transition, with a critical disorder above which all the states are localized
whereas below it extended states appear at the band centre, separated by mobility edges from
the localized states in the rest of the spectrum. This was supported by numerical [8, 9, 17, 18]
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and analytical investigations [3, 5], with d = 2 being the lower critical dimension of the
transition. The question then can be posed of what happens in thin films of finite thickness.
When such a small thickness in terms of a few layers is introduced in an infinite 2D electron
system, the degrees of freedom of the electron motion will be increased. This thin film can be
expected to behave as a 2D system, if the Thouless length LTh, which is the length scale up
to which an electron can diffuse without inelastic collisions, is larger than the film thickness
b, whereas for usual thin films, LTh < b [4]. The study of such systems should be important
because experiments are always done in thin films of finite thickness, and some experiments
[19] which studied electron transport with the variation of film thickness showed a fascinating
role of the film thickness in the metal–insulator transition (MIT): the authors observed an
MIT in Mo–C films at a certain thickness and found that the characteristic parameters like
localization length and dielectric constant grow exponentially with increasing thickness near
the transition.

The numerical investigations in 2D and 3D systems played an important role to study
the properties of electronic eigenstates in these systems. There have been various numerical
methods applied in these systems, e.g. using exact diagonalization of the secular matrices [20],
energy-level statistics [21], transfer-matrix method (TMM) [8, 10, 17], studies of the
dimensionless conductance [23, 24], etc. The results of these studies support the one-parameter
scaling hypothesis.

Recently [25], there was a discrepancy between numerical results obtained using the
TMM and an analytical analysis of thin films of finite thickness based on the self-consistent
theory [4, 5]. Numerically, an MIT induced by film thickness was found whereas the analytical
results showed no metallic phase if the thickness of the film is finite [25]. The discrepancy
is rather surprising since previous studies of 2D systems [8–10, 22] showed good agreement
between the analytical and numerical results.

With this motivation we address numerically the problem of localization in thin
disordered systems of noninteracting electrons using the standard TMM and finite size scaling
(FSS) [8, 17] for non-interacting electrons in zero magnetic field as described by the Anderson
model of localization (defined below), in systems of considerably larger sizes than in [25], and
compare it with the analytical results. To this end we first note that the analytical expression
for the localization length ξ from [25] can be expressed as

ξ = F

√
b′

sinh b′ exp(b′ C/W 2), (1)

where C and F are non-universal constants, W is the disorder strength and b′ is the film
thickness. The expression is valid for λF � � � L < LTh and λF � b′ � L, where λF

is the Fermi wavelength, � the elastic mean-free path, and L the system size. In infinitely thick
films (b′ → ∞), on the other hand, a crossover from 2D to 3D takes place where one can get
both a metallic and an insulating phase depending on the disorder strength.

In section 2, we describe the model and the notations; the TMM and FSS are discussed in
section 3; obtained numerical results are presented in section 3 and some conclusions based on
our numerical results drawn in section 4.

2. The model

The Hamiltonian we have used for our numerical calculations is the Anderson model of
localization given by

H =
N∑
r

εr |r〉〈r | − t
N∑

〈r,r ′ 〉
|r〉〈r ′|, (2)
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where |r〉 is a tight-binding state at site r . The sites r form a simple cubic lattice with
N = M × b × L atoms where L is the length, M is the width, and b is the thickness of
the lattice, here measured in the number of layers of the system, in units of the distance a
between the layers. Since the only relevant microscopic scale in the continuum model that
gives equation (1) is �, we compare the length scales of the continuum and Anderson model via
the relation b′ = αb, where α ≡ a/� is a non-universal number which needs to be taken into
account when comparing analytical and numerical results.

We use open boundary conditions along the b (thickness) direction and periodic boundary
conditions along the M (width) direction. The on-site potentials εr are taken to be randomly
distributed in the interval [−W/2, W/2]; 〈r, r ′〉 denotes that the hopping t is restricted to the
nearest neighbours and the energy units are chosen by setting t = 1.

We assume that this model describes the thin layered system if b � M . When b becomes
comparable to M at small W , one should expect a crossover from insulating towards metallic
behaviour after FSS, and it is therefore important to have b/M as small as possible in order to
stay in the limit of finite thickness. We therefore attribute the appearance of the metallic-like
behaviour in the numerical simulations of [25] to the large values of b/M used. Indeed, for
b = 6, for instance, as M was changed from 2 to 15, the cross-section of the bars changed
from rectangular to square to rectangular shape, and the scaling analysis for such geometries
should not be compared with the analytical results of [25]. Instead, we focus on systems (2)
with M � b. In the case of the thickest system studied here, for example, the scaling analysis
is done for b = 6 and M = 23, 33, 47, and 65, as we discuss in detail below.

3. One-parameter finite size scaling

In the TMM one determines localization properties by a scaling analysis of the Lyapunov
exponents (LE) of the transfer matrices of quasi-1D bars.

The largest length scale λMb is obtained from the smallest LE, λMb ≡ 1/γMb. The
accuracy of these λMb is determined from the variance of the changes of the exponents in
the course of the iteration, and the relative error of λ is 1% in our calculations. For b = 1 our
system is a 2D strip of width M and length L � M , while for b = M it becomes a 3D bar
with square cross-section of M × M atoms and length L.

We check the one-parameter scaling theory by the FSS analysis [8] of the renormalized
decay length, �Mb = λMb/M , for each b individually by expressing it as

�b(M, W ) = fb (ξb(W )/M) , (3)

where ξb(W ) is the scaling parameter which can be identified as the localization length in the
insulating regime and the resistivity in the metallic regime of the infinite system [8] and fb(x)

should be, if the one-parameter hypothesis holds, a universal function f (x) independent of
b. The scale of ξ is determined from the condition that fb(x) = x when x → 0 [8], which
corresponds to expressing ξ in units of a. The numerical determination of fb(x) is done by
the method based on [8], and the thus obtained scaling functions for different b are compared
to check for the universality. If there is an MIT, then �b for given b will have two branches,
one which goes to zero as M increases (indicating localization of electronic eigenstates) and
the other which diverges as M increases (indicating extended eigenstates).

Figure 1 shows �b(M, W ) as a function of strip width M for various W , the scaling
function fb(ξb(W )/M), as well as the localization length ξ(W ) for systems with b = 2, 3, 4
layers, and figure 2 shows the same quantities for systems with b = 5, 6 layers. Our results for
b = 1 are not shown since they are in agreement with results obtained before [22]. For larger
W values, �Mb decreases as the width of the system M increases, indicating localization, while
for smaller W values the decrease becomes much weaker.
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Figure 1. Plot of the renormalized decay length �b(M, W ) (left panels), scaling function fb (right
panels) for systems of width M and b = 2, 3, 4 layers, from top to bottom. Dotted lines connect
points for W values indicated in the corresponding legend.

In addition to the results presented in figures 1 and 2, we have calculated �b for W
values as small as 2, 2, 4, 4, 4 for b = 2, 3, 4, 5, 6, respectively, but no metallic behaviour
was found. Instead, the �b(M) become approximately constant for smaller W values, which
is in qualitative agreement with 2D being the lower critical dimension of the localization–
delocalization transition.
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Figure 2. The same as figure 1, for b = 5 and 6 layers, respectively.

To see the dependence of the scaling function fb on b, we first plot all the obtained
results for fb in figures 1 and 2 using the same range on the axes for easier comparison,
and then show all of the obtained fb together in figure 3, without any rescaling or shifting
of individual curves, including the curve for b = 1. The figure shows that fb does not depend
on b, therefore supporting the universality of the scaling function f (x). Since it has only one
branch corresponding to the localized states it is also in agreement with the one-parameter
scaling hypothesis for disorder strengths W � 4.75, 4.0, 4.5, 6.75, 7.25 for b = 2, 3, 4, 5, 6,
respectively. For b = 1, one parameter-scaling was found [8, 22] to hold for W > 2, and the
previously obtained [8] scaling function f (x) for the 2D system agrees within error bars with
the f (x) obtained here for b � 1, furthermore supporting the universality of the result.

To compare the dependence of the localization lengths on W to the analytical result (1),
we fit the obtained ξb(W ) to the form

ξb(W ) = Ab exp

(
Cb

W 2

)
, (4)

as shown in the left panel of figure 4. The upper and lower right panels of the same figure
show, respectively, the dependence of Cb and Fb ≡ Ab

√
sinh b/b on the number of layers

b. The upper right panel of the figure also contains the mean least-squares linear fit of Cb,
which gives Cb = C b + C0, C = 99 ± 4, C0 = 10 ± 15. The obtained value C0 ≈ 0 is an
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Figure 3. Plot of the scaling functions fb(ξ/M) for b = 1, 2, . . . , 6 from figures 1 and 2.

Figure 4. Left panel: dependence of the localization length ξb on W−2. Straight lines are fits to the
expression ξb(W ) = Ab exp(Cb/W 2). The rightmost point for each b value corresponds to the W
of the topmost curve of the corresponding panel in figures 1 and 2. Right panels: dependence of the
fitting parameters on the thickness b.

additional check that the numerical results are in agreement with equation (1) as far as the W−2

dependence in the exponent is concerned.
The obtained values of ln F depend on b, which seems to be in contradiction with

equation (1) but can be explained by taking into the account the scale factor α, and figure 5
shows ln F , where F ≡ Ab

√
sinh αb/αb for α = 0.73, when ln F becomes approximately

constant, and α = 0.73 ± 0.13, where the error bar is estimated from the range of α values for
which the values of ln F for different b remain within error bars among themselves. This result
can be interpreted as that the effective � of the lattice model (2) in the range of W studied is of
the order of 1.4 ± 0.2 lattice constants.
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Figure 5. Dependence of ln F on b for α = 0.73.

As an additional check of the validity of the above results we notice that the obtained value
of C is in agreement with the value C ≈ 100 obtained in the numerical studies of the 2D
Anderson model [8, 22], i.e. for b = 1, even though the method by which we determine C
relies essentially on the study of systems with b > 1.

Finally, we have done one more check of the results obtained so far, by nonlinear fitting of
results presented in the left panel of figure 4 to equation (1). The obtained values of the fitting
parameters, with χ2 = 58.3, C = 94 ± 3, α = 0.64 ± 0.13, and ln F = 0.41 ± 0.16, are
consistent with the parameters discussed above.

4. Conclusions

Thin quasi-1D bars with rectangular cross section of M × b and length L � M atoms
were studied using the TMM and FSS of the inverse of the smallest Lyapunov exponent,
for b = 1, 2, 3, 4, 5, 6 and M � b. The obtained localization lengths were found to be
in a quantitative agreement with the analytical results. Despite the exponential increase of
the localization length as the thickness increases, we find no signs of extended states for the
disorder strengths studied, in agreement with the one-parameter scaling hypothesis.
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[16] Dobrosavljević V, Abrahams E, Miranda E and Chakravarty S 1997 Phys. Rev. Lett. 79 455
[17] Pichard J L and Sarma G 1981 J. Phys. C: Solid State Phys. 14 L127
[18] Slevin K and Ohtsuki T 1999 Phys. Rev. Lett. 82 382
[19] Lee S J, Ketterson J B and Trivedi N 1992 Phys. Rev. B 46 12695
[20] Schreiber M and Grussbach H 1991 Phys. Rev. Lett. 67 607

Schreiber M and Grussbach H 1993 Fractals 1 1037
Grussbach H and Schreiber M 1995 Phys. Rev. B 51 R663

[21] Shklovskii B I, Shapiro B, Sears B R, Lambrianides P and Shore H B 1993 Phys. Rev. B 47 11487
Simons B D and Altshuler B L 1993 Phys. Rev. B 48 5422
Hofstetter E and Schreiber M 1994 Phys. Rev. B 49 14726

[22] Zharekeshev Kh, Batch M and Kramer B 1996 Europhys. Lett. 34 589
[23] Shapiro B 1990 Phys. Rev. Lett. 65 1510

Altshuler B L, Kravtsov V E and Lerner I V 1989 Phys. Lett. A 134 488
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